Lecture 6 — 26/03/2025

Quantum dots used as single photon emitters (SPEs)
- Role of QD electronic structure for entangled photon sources
- Second-order correlation function (g®®(7))
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Entangled photon sources for quantum communication

Quantum Key Distribution (QKD)
The Distribution of “shared” private and secret randomness — a secret key!
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http://quantumrepeaters.eu/quantumrepeaters.eu/index.php/qcomm/

Transmitted data are encrypted and decrypted using an encryption
algorithm and a secret key, which has been generated by quantum
means, e.g., through the generation of entangled photons

Single QD engineered to have no fine structure splitting (FSS), i.e., same emission

energy for polarization channels 1 & 2

= The polarization of each photon cannot be determined by energy measurements
(absence of “which-path” information)

Quantum entanglement: physical mechanism such that the quantum state of each
particle of a group cannot be described independently of the state of the others
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Electronic structure of semiconductor QDs

In a QD, only the heavy hole band is considered with total angular momentum m = +3/2 (i.e., light
holes are out of the game)

Thus, an electron-hole pair is the
combination of a hole (+3/2) and an

electron (+1/2), with 4 possible states: ¥ ; ; ¥
Exciton total angular A L == ] ﬁ L H
momentum v U v -
~ ~
3 1 —
|+2) |+§; +§> m= +2 Bright states Dark states
[+1) = |[+5 —3) m=+1 = "o
-1 =| ; i> n 1 ”_.> Total angular momentum conservation
|-2) = |—% —5) m=— (As =0, Am = +1 for the photons)

Due to the law of momentum conservation, the total angular momentum of a recombining e-h pair is equal to the
angular momentum of the photon with the additional condition of opposite spins for electrons and holes
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Electronic structure of semiconductor QDs

Electron-hole Coulomb interaction lifts the degeneracy of the 4 QD ground states:
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The splitting between bright states amounts to a few hundreds of ueV in InAs/GaAs QDs
= This is the so-called fine-structure splitting (FSS)
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Electronic structure of semiconductor QDs

Charged states and biexciton
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Charged excitons (also called trions) Biexcitons

interband coulombic interaction vanishes = fine-structure splitting
(FSS) =0, i.e., the exchange splitting at the level of a neutral
exciton can be switched off by injecting an additional carrier

Physical Review B 65, 195315 (2002). (> 880 citations)
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Electronic structure of semiconductor QDs
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Fine-structure splitting (FSS) in QDs

Confinement potential

k ending
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Electronic structure of semiconductor QDs

Measuring the fine structure splitting
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FIG. 2: Polarize pectra for two different QDs emitting
at high and low ies are shown. The FSS is —80 and
420 peV, respecti s in the lower panel origi-
nate from charged excitonic complexes not considered in this
Letter.

Phys. Rev. Lett. 95, 257402 (2005)
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Resonant versus

nonresonant excitation
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Nonresonant excitation (NR):
laser energy > E, barrier

Teap ™ Trel ™ 1-5 ps

Few electron-hole pairs created

BC Lifetime Coherence
(@ (b) .
- @ g
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Resonant excitation (R): Radiative T/ = 850 ps T;'® =200ps  Dephasing
laser energy ~ X energy lifetime TR = 670 ps TR =950ps  time

One electron-hole pair created

(Pauli blocking) Capture and relaxation processes

induce photon decoherence (T, V)

Phys. Rev. B 90, 041303(R) (2014)

i.e., ' ~2.1 ueV)

In the limit of high quality InAs/GaAs QD, at low T(K), the homogeneous linewidth is given by the
relationship I' = ;—f; with T the dephasing time of radiative origin (= 630 ps at 7 K (slide 13, Lecture 5),
2
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Resonant excitation: experimental setup

Use of two crossed polarizers to separate
the laser from the QD emission

\:w,\ - -
emissio‘r:ﬁ-

Polarization selection  Spatial selection

Nature 525, 222 (2015) Phys. Rev. Lett. 114, 067401 (2015)

PHYSICAL REVIEW B 90, 041303(R) (2014)

Number of photons per laser pulse: N = /’LP/ha:i/;;,}v 107 - 10° = 1 photon from the dot

Repetition rate of the laser . .
peti Need a special experimental setup to

discriminate QD photons from laser ones
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Control of the fine-structure splitting

Control of fine-structure splitting of individual InAs quantum dots by rapid

thermal annealing

APPLIED PHYSICS LETTERS 90, 011907 (2007)

D. J. P. Ellis,* R. M. Stevenson, R. J. Young, and A. J. Shields

Toshiba Research Europe Limited, Cambridge Research Laboratory, 260 Science Park, Milton Road,

Cambridge CB4 OWE, United Kingdom
P. Atkinson and D. A. Ritchie

Cavendish Laboratory, Cambridge University, 1] Thomson Avenue, Cambridge CB3 OHE, United Kingdom

Exciton level splitting (peV)

Same trend as in slide 7!

PL {arb)

— S R S
Increasing

anneal
e N |

02 00 02 02 0o 02
Emission erergy relative to H polarzation (mev)

% H V
d ]

Gnd

e * o

70 1380 1390 1400 1410
X Energy (meV)

Physics of photonic semiconductor devices

|2 Selected for a Viewpoint in Physics week ending
PRL 109, 147401 (2012) PHYSICAL REVIEW LETTERS 5 OCTOBER 2012

£

Universal Recovery of the Energy-Level Degeneracy of Bright Excitons in InGaAs
Quantum Dots without a Structure Symmetry

R. Trotta,">* E. Zallo," C. Ortix,” P. Atkinson,"* J. D. Plumhof," J. van den Brink,” A. Rastelli,">" and O.G. Schmidt'
UInstitute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
2Institute of Semiconductor and Solid State Ph) Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
SInstitute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
*Institut des NanoSciences des Paris, UPMC CNRS UMR 7588, 4 Place Jussieu Boite courier 840, Paris 75252 Cedex 05, France
(Received 7 June 2012; published 1 October 2012)

(> 140 citations)
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Entangled photon sources

Isotropic GaAs quantum dots obtained from liquid Ga droplets further exposed to As form GaAs islands
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Entangled photon sources

ARTICLES n%ure :
PUBLISHED ONLINE: 31 OCTOBER 2016 | DOI: 10.1038/NPHOTON.2016.203 p Otonlcs

Selective carrier injection into patterned arrays of
pyramidal quantum dots for entangled photon
light-emitting diodes

T. H. Chung', G. Juska*’, S. T. Moroni, A. Pescaglini, A. Gocalinska and E. Pelucchi
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Photon statistics as a tool to assess coherence

Hanbury Brown-Twiss experiment
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Some insights into the 2"9 order coherence function

15t order coherence function: quantifies electric field fluctuations in time
) - LT WEC L))
{€@P)

Imax - Imin
visibility = ———— = |g®W (1)
Imax + Imin | |

2" order coherence function: quantifies intensity fluctuations in time
(EWE (T EE+TED) IO+ 1)

Pir) = EQEMNE t+nEE+T7))  T®)U(t+7))

Quantum state describing here a set of quantum emitters

- -

~

For a given number Fock state | n>satisfying the bosonic

-

commutation, the zero time-delay correlation becomes!

n—1)

o (0)- "0

11. Aharonovich et al., Rep. Prog. Phys. 74, 076501 (2011).

=P ;(2)(0) < 0.5 for ensuring true single photon emission
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Single photon emission from QDs

Hanbury Brown and Twiss interferometry
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Two-photon resonant excitation of the biexciton

Reduce decoherence and multi-photon emission’
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L. Schweickert et al., Appl. Phys. Lett. 112, 093106 (2018). (> 210 citations)
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Quantum cascade of photons in quantum dots'

Experiment highlighting the potential of single dots as an efficient source of single photons
(quantum information applications)
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Biexciton/exciton as sources of pairs of correlated single photons

Spectral filtering allows isolation of a single photon by a single dot (antibunching — single photon nature of
exciton emission)

Cross-bunching (At > 0, i.e. XX 1%, X 2"d) and cross-antibunching (At < 0, when X photon is detected, system =
ground state, probability of detecting XX photon — 0)

Quantum efficiency for photon pair production in QDs >> efficiencies atomic cascades and parametric
quorescgnce (but operation limited to liquid He temperature)

Traditional sources of entangled photons 1E. Moreau et al., Phys. Rev. Lett. 87, 183601 (2001). (> 300 citations)
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Electrically-driven QD-based single photon emitters

Unoxidised
aperture

Cambridge + Toshiba UK

Z.L.Yuan et al., Science 295, 102 (2002). (> 1030 citations)
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F. Hargart et al., Appl. Phys. Lett. 102, 011126 (2013).
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Alternative solid-state single photon emitters

Deep-level defects in:

SiC!
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IA. Lohrmann et al., Rep.
Prog. Phys. 80, 034502 (2017).
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OPERATE AT 300 K BUT NOT AS BRIGHT AS QDs
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